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Commonality in Liquidity:  

Transmission of Liquidity Shocks across Investors and Securities 
 
 

Abstract 
 

Recent findings of common factors in liquidity raise many issues pertaining to the determinants 
of commonality and its impact on asset prices. We explore some of these issues using a model of 
liquidity trading in which liquidity shocks are decomposed into common (systematic) and 
idiosyncratic components. We show that common liquidity shocks do not give rise to 
commonality in trading volume, raising questions about the sources of commonality that is 
detected in the literature. Indeed, trading volume is independent of systematic liquidity risk, 
which is always priced independently of the liquidity in the secondary market. In contrast, 
idiosyncratic liquidity shocks create liquidity demand and volume, and investors can diversify 
their risk by trading. Hence, the pricing of the risk of idiosyncratic liquidity shocks depends on 
the market’s liquidity, with idiosyncratic liquidity risk being fully priced only in perfectly 
illiquid markets. While trading volume is increasing in the variance of idiosyncratic liquidity 
shocks, price volatility is increasing in the variance of both systematic liquidity shocks and 
idiosyncratic liquidity shocks. Surprisingly, our results are largely independent of the number of 
different securities traded in the market. When asset returns are uncorrelated, there is no 
transmission of liquidity across assets even when investors experience common (systematic) 
liquidity shocks, suggesting that such liquidity shocks may not be the source of commonality in 
liquidity across assets detected in the literature. However, under limited conditions, more liquid 
securities can act as substitutes for less liquid securities. Overall, our findings suggest that 
common factors in liquidity may be the outcome of covariation in investor heterogeneity (e.g. as 
measured by co-movements in the volatility of idiosyncratic liquidity shocks) rather than of 
common liquidity shocks. Moreover, we find that different liquidity proxies measure different 
things, which has implications for future empirical analysis.  
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1. INTRODUCTION 

With the proliferation of financial securities and the markets in which they trade, 

considerable attention has been focused on the role of liquidity in financial markets. While the 

traditional focus of research in this area has been on the liquidity of individual securities, recent 

studies have detected common factors in prices, trading volume, and transactions-cost measures 

such as bid-ask spreads.1 These findings highlight the importance of understanding the 

mechanics by which liquidity demand and supply is transmitted across investors and securities. 

Chordia, Roll and Subrahmanyam (2000) note that drivers of common factors in liquidity may be 

related to market crashes and other market incidents, pointing to recent incidents such as the 

Summer 1998 collapse of the global bond market and the October 1987 stock market collapse 

which did not seem to be accompanied by any significant news. They also identify as an 

important area of future research the question of whether and to what extent common factors in 

liquidity affect asset prices. 

This paper develops a model aimed at exploring some of the issues pertaining to the 

determinants of commonality and its impact on asset prices. Our model follows the basic 

intuition provided by Karpoff (1986), who characterizes non-informational trading as the 

outcome of differences in personal valuation of assets by investors, due to their differential 

liquidity needs. In our model, liquidity shocks which cause investors to revise their personal 

valuations can have both systematic (i.e. common across all investors) and idiosyncratic 

components. This formulation permits us to examine the transmission of liquidity shocks across 

                                     
1 See, for example, Tkac (1999), Chordia, Roll and Subrahmanyam (2000), Gibson and Mougeot (2000), Lo and 
Wang (2000), Huberman and Halka (2001), and Hasbrouck and Seppi (2001). 
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assets and across the investor base of individual assets. Indeed, our analysis highlights the 

importance of variations in liquidity demand across investors as a crucial determinant of the 

liquidity of assets they hold. 

Common factors in liquidity seem to imply that liquidity shocks apply systematically 

across investors, and are transmitted across investors and/or securities causing market-wide 

effects. We show that systematic and idiosyncratic liquidity shocks have significantly different 

effects on asset prices, trading volume and volatility. The demand for liquidity arises from 

investor heterogeneity caused by idiosyncratic liquidity shocks, and is manifested in trading 

volume. Contingent upon the state of liquidity in the market, trading volume increases with the 

intensity of idiosyncratic liquidity shocks (measured by their variance). In contrast, systematic 

liquidity shocks do not give rise to a demand for liquidity or affect trading volume, although they 

have a significant impact on price volatility. The risk of systematic liquidity shocks is always 

priced and is independent of the state of liquidity in the secondary market, since investors are 

unable to diversify this risk by trading.2 The price volatility associated with systematic liquidity 

shocks is also not contingent upon the state of liquidity in the market. Indeed, as in Milgrom and 

Stokey (1982), systematic liquidity shocks will not induce trading even if the market is liquid. In 

contrast, the state of liquidity in the market is very important in the case of idiosyncratic liquidity 

shocks. Since investors are differentially impacted by the shocks, they can be transmitted across 

the investor base by trading, to the benefit of all investors. Hence, investors will seek to exploit 

the benefits of trading if the market is liquid and the state of liquidity in the market will 

                                     
2 Gibson and Mougeot (2000) confirm that systematic market liquidity is priced in the US stock market. 
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determine the extent to which the risk of idiosyncratic liquidity shocks is incorporated in the 

price. 

These results suggest the importance of carefully differentiating between systematic and 

idiosyncratic liquidity drivers when using standard liquidity measures as proxies for liquidity. 

They also raise questions about the sources of commonality in liquidity detected in the literature. 

It is especially interesting to observe that systematic liquidity shocks do not cause co-movement 

in volume. Idiosyncratic liquidity shocks are the principal determinant of volume, which expands 

as the intensity of these shocks increases. Commonality in the context of recent findings in the 

literature of covariation in volume suggests the existence of covariation in investor 

heterogeneity, as measured, for example, by co-movements in the volatility of idiosyncratic 

liquidity shocks experienced by investors. The tax cycle is one potential source of such 

covariation although as conjectured by Chordia, Roll and Subrahmanyam (2000), behavioral 

factors may also be at work. Huberman and Halka (2001) conjecture that commonality emerges 

due to noise traders, which is consistent with our model if the volatility of idiosyncratic liquidity 

shocks is considered as a proxy for the level of noise in the market.  

We provide new insights into the pricing of illiquidity. Amihud and Mendelson (1986) 

empirically demonstrate that asset returns are increasing in the cost of transacting (bid-ask 

spread) and hypothesize that in equilibrium, assets with higher bid-ask spreads will be held by 

investors with longer investment time horizons. Brennan and Subrahmanyam (1996) also find a 

significant relationship between required rates of return and measures of illiquidity, after 

adjusting for the Fama and French risk factors and the stock price level. However, Eleswarapu 

and Reinganum (1993) find a significant liquidity premium only in January. As noted by 
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Brennan and Subrahmanyam (1996), these differences may be due in part to the noisiness of 

transactions cost measures. However, as our analysis suggests, different liquidity variables 

measure different things, which may also be a confounding factor in empirical analysis. 

Moreover, whereas the traditional focus has been on factors related to the supply of liquidity, we 

show that liquidity is the outcome of both demand and supply factors, with the demand side 

having a much more significant and varied impact than previously thought to be the case in the 

literature. When investors have differences in liquidity demand due to differences in their 

exposure to liquidity shocks, we show that investors with lower exposure to liquidity shocks will 

supply liquidity to investors with higher exposure, and benefit from a higher risk-adjusted return 

for doing so. Thus, in addition to receiving higher returns by holding less liquid assets (as in 

Amihud and Mendelson (1986)) low-exposure investors will also receive a higher risk-adjusted 

return than high-exposure investors from the assets that they hold in common. 

Surprisingly, our results are largely independent of the number of different securities 

traded in the market. With multiple securities, systematic liquidity shocks continue to be fully 

priced, since they are, by definition, perfectly correlated across investors, making them 

impossible to diversify by trading. This would be the case even if these shocks were not common 

across assets. In contrast, idiosyncratic liquidity shocks are priced only if they cannot be 

mutualized by trading. Even if idiosyncratic liquidity shocks were common across assets while 

being idiosyncratic across investors, there will be no transmission across assets as long as all 

assets can be freely traded. The only case in which one asset can be a “liquidity substitute” for 

another asset is if liquidity shocks on one asset can be better mitigated by trading another asset, 

which would arise if there were significant liquidity differences between the assets, all else 
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equal. In such cases, the market price of liquid substitutes can be used to benchmark the value of 

illiquid securities. Indeed, in the extreme case when perfectly liquid but otherwise identical 

substitutes exist for illiquid securities, the price discount due to illiquidity should be zero in the 

absence of short-sale constraints. The magnitude of the discounts observed empirically suggests 

that the unavailability of liquid substitutes and/or short sale restrictions may be significant 

impediments to hedging the liquidity risk of illiquid securities in this way.  

The rest of the paper is organized as follows. In the next section, we develop the 

benchmark model of our paper. In Section 3, we examine the transmission of liquidity across 

investors, and study the differential effects of systematic and idiosyncratic liquidity shocks on 

asset prices, trading volume and price volatility. In Section 4, we extend the analysis to the case 

of multiple securities to examine liquidity transmission across securities, and study cases in 

which liquid securities can act as substitutes for their illiquid counterparts. Section 5 concludes. 

 

2. THE MODEL 
 

We consider a two-period, three-date economy with a group of M risk-averse investors. 

We assume that each agent is endowed at time 0 with 1 unit of a single risky asset and 1 unit of 

the riskless asset. The risky asset pays off a random quantity of the numeraire riskless asset, v, at 

time 2, where E(v) > 1. The return, v, is common knowledge, and is distributed normally with 

mean v  and variance 2
vσ .  The risk-free return is assumed to be zero. Investors maximize 

negative exponential utility functions of their wealth at time 2, 2W : 2 2( ) exp ( )U W  =   aW− − , 

where a  ≥ 0 is the coefficient of risk aversion. 
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All investors experience liquidity shocks at time 1, with the distribution of these shocks 

being known ex ante at time 0. These liquidity shocks can arise due to a broad range of events 

that give rise to a change in the investor’s marginal valuation of the risky asset without new 

information about the fundamental value of the security. Following Karpoff (1986), Michaely 

and Vila (1995), and Michaely, Vila and Wang (1996), we characterize this shock as a random 

additive change, iθ , to investor i's valuation of the payoff v  from the risky asset.3 iθ  is also 

distributed normally with mean 0 and variance 2
θσ , and is independent of v .  

In our model, liquidity shocks can change each investor’s demand for the risky asset, and 

induce trading when it is rational and feasible for an investor to do so. Unlike in Grossman and 

Stiglitz (1980), where the magnitude of liquidity trades is specified exogenously, liquidity 

trading is discretionary in our model since investors have the ability to rationally determine the 

size of their trades after taking account of all the costs and benefits of rebalancing their 

portfolios. 

We assume that in general, liquidity shocks can be decomposed into normally distributed 

systematic and idiosyncratic components: 

 i i iθ γ δ ε= +  (1) 

 

                                     
3 In general, liquidity shocks can be caused by changes in preferences (Tobin (1965), and Diamond and Dybvig 
(1983)), changes in endowments (Glosten (1989), Madhavan (1992), Bhattacharya and Spiegel (1991), and Spiegel 
and Subrahmanyam (1992)), or changes in personal valuations due to taxes and other non-informational reasons 
(Karpoff (1986), Michaely and Vila (1995), and Michaely, Vila and Wang (1996)), that change each investor’s 
marginal valuation of the security without affecting its fundamental return. We use the latter formulation to preserve 
tractability. 
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where δ , the systematic component, is perfectly correlated across all investors, whereas iε , the 

idiosyncratic component, is assumed to be identically and independently distributed (i.i.d.) 

across investors. δ  is normally distributed with a mean of 0 and a variance of 2
δσ  while iε  is 

normally distributed with a mean of 0 and a variance of 2
εσ . 0iγ ≥  measures investor i’s 

exposure to the systematic liquidity shock.4 

Liquidity shocks affect investors’ marginal valuation of the risky asset and lead them to 

optimally rebalance their portfolios by trading shares in the risky asset when this is possible. 

There are no restrictions on short holdings of the risky asset.  

We assume that trading in the secondary market at time 1 occurs in a simple batch market 

where all trades clear at the same price subject to transactions costs. For tractability, we assume 

a transactions cost formulation that is commonly used in the literature:
 5 

 ii XPP 111 ∆+= λ  (2) 

 

0λ ≥  is the transactions cost parameter, 1P  is the market-clearing price in the absence of 

transactions costs, iX 1∆  is the trade size of individual i, and iP1  is the actual price paid or 

received by individual i. 

In general, the portfolio selection problem of individual i may be expressed as: 

                                     
4 We are grateful to a referee for suggesting this formulation. 
5 See, for example, Kyle (1985), and Brennan and Subrahmanyam (1996). The market microstructure that gives rise 
to transactions costs is assumed to be exogenous to the model. 
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where  tiW   =  wealth of individual i at the end of time t; 

tP    =  price of risky asset at time t (in units of the riskless asset);  

tiX   = amount of risky asset held by individual i at the end of time t; and 

iTC  = transactions cost ( 2
1iXλ∆ ) incurred by individual i in rebalancing time 1 portfolio. 

 

Given our assumption of negative exponential utility, (3) can be stated as: 

 { }
0 1

2
0 1 0 0 1 0 1 1 1 0 max max exp ( ) ( ) ( )

i i
i i i i i iX X

E E a W X P P X v P X Xθ λ   − − + − + + − − −    
 (4)  

 

Individuals solve this portfolio problem recursively. In the rest of the paper, we use this model to 

examine how liquidity shocks affect an investor’s portfolio selection decision, and study the 

implications for liquidity transmission across investors and securities in order to better 

understand the causes and consequences of commonality in liquidity. 

 

3. TRANSMISSION OF LIQUIDITY ACROSS INVESTORS 

 In this section we examine how systematic and idiosyncratic liquidity shocks affect the 

transmission of liquidity across investors, and the impact they have on overall market liquidity 
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and asset prices. We also analyze the implications for trading volume and price volatility in order 

to link our results to the existing literature on commonality in liquidity. We begin by presenting 

the general case in which investors are affected by liquidity shocks consisting of heterogeneous 

systematic and idiosyncratic components. Thereafter, we examine special cases to derive closed-

form solutions and to strengthen the insights provided by our model.  

 

3.1 Asset Pricing and Liquidity Transmission across Investors 

The general case where investor i experiences a liquidity shock of iθ  as specified by (1) 

gives rise to both ex ante and ex post differences across investors due to liquidity shocks. The ex 

ante differences arise because investors have different exposures ( iγ ) to systematic liquidity 

shocks. The ex post differences arise because of the differences across investors in the realization 

of idiosyncratic liquidity shocks. Thus, as in Amihud and Mendelson (1986), investors will make 

their time 0 portfolio decisions not only by rationally anticipating their time 1 liquidity needs but 

also by taking account of the currently known differences across the investor base. Since the 

effect of differences in iγ  across the investor base is to create differences in the incidence of 

systematic liquidity shocks, this will cause investors who are less impacted by systematic shocks 

(possibly because of portfolio composition or hedging strategies exogenous to the model) to 

benefit by providing liquidity to those investors who are more impacted by systematic shocks. 

Lemma 1 summarizes the key results for the time 1 equilibrium. 
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Lemma 1. At time 1, the market clearing price, 1P , and the equilibrium holding of the risky asset 

by investor i, 1iX  are respectively: 

 

 

2
1

2
0

1 2

ˆ ˆ

ˆ ˆ ˆ( ) ( ) 2
2

A A v

i A i A v i
i

v

P  v a

a X  X
a

γ δ ε σ

γ γ δ ε ε σ λ
σ λ

= + + −
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=

+

 (5) 

where δ̂  and îε  denote the realizations of δ  and iε , respectively, and 1

M

i
i

A M

γ
γ ==

∑
, 1

ˆ
ˆ

M

j
j

A M

ε
ε ==

∑
  

are the average exposure to systematic liquidity shocks and the average incidence of 

idiosyncratic liquidity shocks, respectively, across the investor base.  

 

Proof. See Appendix. 

 

While all investors experience systematic liquidity shocks, only ˆ
Aγ δ , the average 

systematic shock (which represents the undiversifiable component) is reflected in the price. The 

“idiosyncratic” component of the systematic liquidity shock experienced by investor 

i, ˆ( )i Aγ γ δ− , is mutualized by trading at time 1, as reflected in the expression for 1iX . It would be 

noted that in this sense, ˆ( )i Aγ γ δ−  manifests itself identically to the idiosyncratic shock 
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experienced by investor i, îε .6 Thus, differences in exposure to systematic liquidity shocks 

alleviate the impact of these shocks and lead to partial risk sharing through trading between high 

and low-exposure investors. We explore this risk-sharing in more detail later. 

Although transactions costs do not affect the equilibrium price at time 1, they have an 

impact on trading volume. We examine the impact of liquidity shocks on price volatility and 

trading volume in Subsection 3.2 under different assumptions about transactions costs.  

In order to solve for the equilibrium at time 0, we need to make a specific assumption 

about the distribution of iγ across the investor base. As we noted previously, systematic liquidity 

shocks in the general case can be divided into uniform (undiversifiable) and idiosyncratic 

components. Since the latter component is already captured in our formulation through iε , we 

lose little generality by assuming that systematic shocks consist only of the average component 

in the previous formulation, ˆ
Aγ δ . Specifically, we assume that 1i Aγ γ= = .7 This assumption 

makes all investors ex ante identical at t = 0.8  

                                     
6 For finite M, idiosyncratic shocks also contain an undiversifiable component, ˆAε . Unlike ˆ

Aγ δ , however, 
ˆ 0Aε → as M → ∞ . 

7 Alternatively, we could assume a specific distribution for iγ that is non-uniform across investors but this also 
reduces to the current case of a uniform systematic component and an idiosyncratic component. Ex ante 
heterogeneity across investors, the feature in the general model that we lose by this assumption, is explored more 
fully in Subsection 3.3 in the context of liquidity risk-sharing across investors. 
8 It will be observed that in the case where iγ is equal across all investors, the systematic component, δ , manifests 
itself identically to a shock to the fundamental payoff of the risky asset. The same effect will result if investors 
experience a systematic shock to their endowments or preferences. A systematic liquidity shock that impacts all 
investors with equal intensity, regardless of how it originates, causes all investors to revise their valuation of the 
risky asset identically. In this sense, a systematic liquidity shock is “fundamental,” making it more difficult to 
empirically differentiate it from a shock to the asset’s fundamental returns. This difficulty, which persists with all 
formulations of systematic liquidity shocks, does not detract from the importance of understanding the consequences 
of such shocks, and differentiating their effect from that of idiosyncratic liquidity shocks. 
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Noting that 0 1iX = , Lemma 2 states the result for the time 0 equilibrium price. 

 

Lemma 2. The equilibrium price at time 0, 0P , is: 

 

2
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2 2
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2 2
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M
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 (6) 

 

Proof.  See Appendix. 

 

In the case considered here where all investors are ex ante identical, they will hold their 

initial endowments in equilibrium at time 0, in contrast to time 1 when idiosyncratic liquidity 

shocks are realized. By trading with each other, the idiosyncratic liquidity shocks are transmitted 

across investors as the rational response to the valuation changes caused by the shocks.  

The price at time 0 incorporates a discount for the liquidity risk that investors face at time 

1, given by 
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M
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 Φ = + +
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 (7) 

 

The transactions cost parameter, λ, is a proxy for the external factors that determine market 

liquidity at time 1, and parameterizes the liquidity continuum between the case in which the time 

1 market is frictionless, when 0λ = , and the case in which it is perfectly illiquid (de facto 
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closed), when λ →∞ . Conditional on a given distribution of liquidity shocks, the size of the 

market as measured by the number of investors, M, also determines its liquidity. This can be seen 

by examining the limiting case of 1M =  in which the market will, by definition, be perfectly 

illiquid. A frictionless market in which M →∞ can be thought of as a perfectly liquid market. 

For a given value of 1M > , the time 0 equilibrium price 0P  decreases monotonically with 

the transactions cost parameter λ. This price decline reflects the corresponding increase in the 

discount for illiquidity, Ф, as the cost of trading in the secondary market rises.  

Our principal conclusions on the pricing of liquidity risk follow directly from Lemmas 1 

and 2, and are stated in Proposition 1. 

 

Proposition 1 (Pricing of Liquidity Risk). The pricing of idiosyncratic liquidity risk is contingent 

upon the state of liquidity in the market, whereas systematic liquidity risk is always priced and is 

independent of the state of liquidity in the secondary market. The systematic liquidity risk 

premium 2a δσ  is increasing in the variance of systematic liquidity shocks. Idiosyncratic liquidity 

risk is fully priced only if the secondary market is perfectly illiquid, and unpriced if the 

secondary market is perfectly liquid. The idiosyncratic liquidity risk premium 2a εσ  is increasing 

in the variance of idiosyncratic liquidity shocks. 

 

The result for systematic liquidity risk parallels the no-trade equilibrium in Milgrom and 

Stokey (1982). If liquidity shocks are common to all investors, they cannot be diversified away 

by trading, nor will they induce trading even if the market is liquid. At time 1, the price will 
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simply adjust without trading to reflect the systematic liquidity shock and at time 0, the risk of 

the systematic liquidity shock will be fully discounted in the price. 

In contrast, the state of liquidity in the market is critical in the case of idiosyncratic 

liquidity shocks. Since investors are differentially impacted by the shocks, they can potentially 

be transmitted across the investor base by trading, to the benefit of all investors. Hence, investors 

will seek to exploit the benefits of trading if the market is liquid. The extent to which the risk of 

idiosyncratic liquidity shocks is incorporated in the price depends on the state of liquidity in the 

market, which in turn is determined by λ and M.  When 0λ =  and M →∞ , idiosyncratic 

liquidity shocks will no longer be priced since investors are able to perfectly offset the effect of 

the shocks in the market. On the other hand, idiosyncratic liquidity shocks will be fully priced 

when the market is perfectly illiquid, when λ →∞ or M = 1. 

In the following subsections, we further investigate issues pertaining to volume and 

volatility in the context of systematic and idiosyncratic liquidity shocks, as well as the impact of 

investor heterogeneity on a security’s liquidity and pricing. 

 

3.2 Volume and Volatility 

Trading arises at time 1 in the secondary market when individual valuations of the 

security differ from the market price because of idiosyncratic liquidity shocks. This leads to the 

trade of marginal quantities until the price in equilibrium equals each investor's marginal 

valuation. Noting that when 1iγ =  all investors, being ex ante identical, will hold their initial 

endowments in the time 0 equilibrium, i.e. 0 1iX = , the equilibrium time 1 trade size for 

individual i, 1 1 0i i iX X X∆ = − , becomes 
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1iX∆  is perfectly positively correlated with the differential between his individual liquidity 

shock and the average shock to the aggregate base of investors. If his personalized valuation at 

time 1 due to the shock exceeds the price in the market, he will exercise his choice to buy the 

risky asset. Likewise, if his personalized valuation is less than the market price, he will sell the 

risky asset.  1iX∆  is normally distributed with mean 0 and variance 
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The expected individual and market-wide trading volume follow directly from (8) and are 

presented in Lemma 3.  

 

Lemma 3. The expected size of each individual's trade is given by: 

 [ ]0 1 2
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and the expected total volume of trade in the market, 1Q , is: 
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Proof.  See Appendix. 

 

The result for price volatility is presented in Lemma 4. 
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Lemma 4. If 2
Pσ  denotes price volatility at time 1, then 

2
2 2
P M

ε
δ

σσ σ= + . 

 

Proof.  Follows directly from (5) for the case of 1iγ = . 

 

These results establish the relationship between liquidity shocks, and volume of trade and 

price volatility in the secondary market. Proposition 2 summarizes the key result of this 

subsection. 

 

Proposition 2 (Volume and Volatility). Common (systematic) liquidity shocks do not affect 

trading volume. Trading volume increases with the variance of idiosyncratic liquidity shocks and 

decreases with transactions costs.  Both common (systematic) and idiosyncratic liquidity shocks 

affect price volatility. The price volatility associated with systematic liquidity shocks is not 

contingent upon the state of liquidity in the market, and is increasing in the variance of 

systematic liquidity shocks. Contingent upon a liquid market at time 1, the price volatility 

associated with idiosyncratic liquidity shocks is increasing in the variance of idiosyncratic 

liquidity shocks and decreasing in M. 

 

These results suggest the importance of carefully differentiating between systematic and 

idiosyncratic liquidity shocks when using standard liquidity measures as proxies for liquidity. In 

particular, systematic liquidity shocks exacerbate price volatility but have no effect on trading 
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volume. The state of liquidity in the market is another important determinant of these liquidity 

measures. While the state of liquidity in the market depends on whether it is open for trading and 

if so, the cost of undertaking transactions, it will also depend on the degree to which investors 

are exposed to liquidity shocks, and thus, the level of liquidity that they demand. In the next 

subsection, we further examine the sharing of liquidity risk across investors arising from their 

differential exposure to systematic liquidity shocks. 

 

3.3 Sharing of Liquidity Risk across Heterogeneous Investors 

In Subsection 3.1, we noted that when investors have non-uniform exposure to systematic 

liquidity shocks, they would in general be heterogeneous at time 0. In that case we observed 

partial risk-sharing across investors through trading at time 1. We also noted that ex ante 

differences could also affect portfolio decisions at time 0. In this subsection, we examine this 

specific question, using simplifying assumptions to preserve tractability. We first study the 

general case of liquidity shocks under special assumptions about transactions costs. Specifically, 

we examine in turn the two polar cases of a perfectly liquid market ( 0λ = ) and a perfectly 

illiquid market (λ →∞ ) at time 1. Next, we assume a specific non-uniform distribution of 

systematic liquidity shocks to examine risk sharing through differences in portfolio holding at 

time 0. Since we have previously considered the comparative statics associated with M, we 

simplify the analysis by assuming that M →∞ , causing ˆ 0Aε → .  

Lemma 5 states the result for the time 0 equilibrium price and holding of the risky asset 

for the general case of liquidity shocks when the time 1 market is perfectly liquid. 
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Lemma 5. When the secondary market at time 1 is perfectly liquid, the time 0 market clearing 

price, *
0P  and the equilibrium holding of the risky asset by investor i, *

0iX  respectively, are: 

 * 2 2 2 *
0 0; 1v A iP v a a Xδσ γ σ= − − =  (11) 

 

Proof.  See Appendix. 

 

Interestingly, despite their ex ante differences, all investors hold the same portfolio at 

time 0 since the perfectly liquid market enables them to respond to their liquidity shocks by 

trading costlessly at time 1. Therefore, no prior hedging by rebalancing portfolios at time 0 takes 

place. As suggested by Proposition 1, only the average systematic liquidity shock (the 

undiversifiable component) is priced. Investors who have a low exposure to the systematic 

liquidity shock will reap the benefit of a lower price at time 0 than would be justified by the 

liquidity risk that they bear. In contrast, investors who have a high exposure to systematic 

liquidity shocks will pay a higher price than would be justified by their liquidity risk. This is the 

cost of being able to transfer their liquidity risk to low-exposure investors by trading with them 

in the liquid market at time 1. 

The situation changes when the time 1 market is perfectly illiquid. In this case, the option 

to rebalance portfolios in the secondary market is no longer available, and investors need to take 

account of this knowledge when making their portfolio decisions at time 0. We state the first 

order condition for this case in Lemma 6 below. 
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Lemma 6. When the secondary market at time 1 is perfectly illiquid, the investor’s portfolio 

problem collapses to a single-period problem in which the time 0 first order condition becomes: 

 2 2 2 2
0 0( ) 0v i iv P a  Xδ εσ γ σ σ− − + + =  (12) 

 

Proof.  The two-period problem collapses to a single-period problem. The proof parallels the 

proof of Lemma 1. 

 

Noting that in (12) iγ  is the only term that differs across investors, we can observe that in 

equilibrium, investors with a high exposure to systematic liquidity shocks will hold a lower 

amount 0iX  of the risky asset at time 0 than investors with a low exposure. 

To explore this point further, and to examine market clearing, equilibrium prices and 

holdings at time 0, we need to impose a distribution for the iγ  across the investor base. Unlike 

previously when we assumed a uniform distribution in which case there would be no potential 

for risk sharing at time 0, we assume that the investor base consists of two investor clienteles. A 

fraction φ  is of type 1, for whom 1iγ = . The rest of the investor base is of type 2, for whom 

0iγ = .  

When the market is perfectly liquid, the equilibrium price and holding at time 0 become: 

 * 2 2 2 *
0 0; 1v iP v a a Xδσ φ σ= − − =  (13) 

The result here is consistent with (11) for the general case. Type 2 investors obtain an additional 

return of 2 2a δφ σ  for meeting the liquidity needs of type 1 investors at time 1, while type 1 
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investors forego a return of 2 2(1 )a δφ σ−  for the benefit of the option to alleviate the systematic 

component of their liquidity risk at time 1.  

As we have noted, when the market is perfectly illiquid at time 1, due to the differences 

in liquidity demand across the two clienteles, equilibrium holdings of the risky asset at time 0 

need not in general be identical across the two clienteles. We assume that in equilibrium, type 1 

investors hold a fraction µ  of the risky asset, with type 2 investors holding the remainder.  From 

the optimal choice of type 1 investors, we obtain the following expression from (12) for the time 

0 equilibrium price of the risky asset, 0P : 

 2 2 2
0 ( )v

aP v δ ε
µ σ σ σ
φ

= − + +  (14) 

and similarly, from the optimal choice of type 2 investors: 

 2 2
0

(1 ) ( )
(1 ) v

aP v ε
µ σ σ
φ
−

= − +
−

 (15) 

 

The equilibrium values ofµ  and 0P  are stated in Lemma 7 below. 

 

Lemma 7. When the secondary market is perfectly illiquid, the fraction of the risky asset held in 

equilibrium by type 1 investors, µ , and the market clearing price at time 0, 0P  are as follows: 
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2 2 2

2 2

2 2
* 2 2 2

0 2 2 2 2 2

(1 )

( )
( ) (1 )( )

v

v

v
v

v v

1  

P v a

δ ε

ε

ε
δ ε

ε δ ε

µ φ φ
σ σ σφ φ
σ σ

σ σσ σ σ
φ σ σ φ σ σ σ

 
 
 = ≤
  + +

+ −  +   

 +
= − + +  + + − + + 

 (16) 

 

Proof. See Appendix. 

 

It is observed that in the time 0 equilibrium, type 2 investors hold more of the risky asset 

than type 1 investors do. Type 1 investors are exposed to a higher risk from their holdings of the 

risky asset due to their higher exposure. Thus, since they are not able trade this asset after 

observing their liquidity shocks, type 1 investors hedge the effect of the anticipated shock by 

selling a part of their endowment to the type 2 investors who are not exposed to the systematic 

component of liquidity risk that type 1 investors face. 

The pricing result in the case of an illiquid time 1 market is also interesting. We denote 

the valuations attached by type 1 and type 2 investors at time 0 to their initial endowments (i.e. 

prior to any portfolio rebalancing at time 0) as 1
0P  and 2

0P , which are given by 

1 2 2 2
0 ( )vP v a δ εσ σ σ= − + +  and 2 2 2

0 ( )vP v a εσ σ= − + . We observe the following relationship 

relative to the equilibrium price at time 0: 

 1 * 2
0 0 0P P P≤ ≤  (17) 
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If only type 2 investors populated the investor base, the price they would pay for the risky asset 

is higher since holding the asset does not expose them to systematic liquidity risk. The 

equilibrium price is lowered due to the presence of the type 1 investors, who transfer a part of 

their liquidity risk to type 2 investors by selling them part of their endowment in the primary 

(time 0) market. Thus, while type 2 investors hold more of the risky illiquid asset, they are 

compensated for doing so by the price differential between the two cases, permitting them to 

earn a higher return. This result is consistent with and extends the intuition in Amihud and 

Mendelson (1986) where the liquidity needs of investor clienteles are measured by holding 

period, and investors who have a longer holding period (lower liquidity need) earn a higher 

return. 

Proposition 3 summarizes the key result of this subsection. 

 

Proposition 3 (Sharing of liquidity risk across investors). When the secondary market is 

perfectly liquid, high exposure investors will seek to manage their risk by trading with low 

exposure investors after observing their liquidity shocks.  When the secondary market is 

perfectly illiquid, high exposure investors will seek to manage their risk by reducing their 

holdings of the risky asset in the primary market in anticipation of future shocks. In either case, 

low exposure investors will earn a higher risk-adjusted return, as a reward for the transmission 

to them of the liquidity risk of high exposure investors. 

 

This section has discussed commonality of liquidity shocks across investors for the case 

of a single risky asset, both when investors are ex ante identical and when they differ due to their 
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exposure to systematic liquidity shocks. Next, we turn to the case of multiple assets and the 

transmission of liquidity across assets as well as investors. 

 

4. TRANSMISSION OF LIQUIDITY ACROSS SECURITIES 

 

In this section, we examine the case in which investors hold multiple risky assets, to 

study liquidity transmission and commonality across securities. We develop our basic results for 

the general multi-security case and examine specific examples in the context of two risky assets. 

As in Section 3, we begin our analysis with our general formulation of liquidity shocks (adapted 

for the case with multiple securities) and transactions costs, before moving to specific cases. 

 

4.1 Systematic and Idiosyncratic Liquidity Shocks with Multiple Assets 

We assume that individuals have the same preferences as before and are endowed with 

one unit of the riskless asset and one unit each of K risky assets, indexed by k, k = 1,..., K. As 

before, risky asset k pays off a random quantity of the numeraire riskless asset, kv , at time 2, 

where ( ) 1kE v > . The kv , k = 1,..., K, are identically and independently (i.i.) normally distributed 

with mean v  and variance 2
vσ .  The risk-free return is assumed to be zero as before. Since we 

have previously studied the comparative statics associated with variations in the size of the 

investor base, M, we simplify the analysis in this section by assuming that .M →∞  All investors 

experience liquidity shocks at time 1, which are characterized as random additive increments, 
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k
iθ , to the payoff kv  of the risky asset to investor i. As in the single-asset case, k

iθ  can be 

decomposed into normally distributed systematic and idiosyncratic components: 

 k k
i i iθ γ δ ε= +  (18) 

where δ , the systematic component, impacts investor i with an exposure of 0iγ ≥ . Thus, the 

systematic component is, by design, common across the asset base. In contrast, k
iε , the 

idiosyncratic component, is assumed to be i.i.d. across both investors and assets. δ  has a mean 

of 0 and a variance of 2
δσ  while k

iε  has a mean of 0 and a variance of 2
εσ . We assume that the 

transactions cost parameter, λ, is uniform across assets. 

The individual's problem in this case is: 

 
{ } { }0 11 1

2
0 1 0 0 1 0 1 1 1 0

1 1 1
max max exp ( ) ( ) ( )

K Kk k
i ik k

K K K
k k k k k k k k k

i i i i i i
X X k k k

E E a W X P P X v P X Xθ λ
= =

= = =

    
− − + − + + − − −    
      

∑ ∑ ∑ (19) 

where 0
k
iX  and 1

k
iX  are the time 0 and time 1 holdings of asset k by individual i. Paralleling the 

single-asset case, we state the key results for the time 1 equilibrium in Lemmas 8. 

 

Lemma 8. The market clearing price at time 1, 1
kP , and the equilibrium holding of asset k by 

investor i, 1
k
iX  are respectively: 

 

2
1

2
0

1 2

ˆ

ˆ ˆ( ) 2
2

k
A v

k k
k i A i v i
i

v

P  v a

a X  X
a

γ δ σ

γ γ δ ε σ λ
σ λ

= + −

− + + +
=

+

 (20) 

where δ̂  and ˆk
iε  are the realizations of δ  and k

iε , respectively. 
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Proof. Parallels proof of Lemma 1 for the single-asset case. 

 

Surprisingly, it can be seen from Lemma 8 that the results for each individual asset in the 

multi-asset case are identical to those obtained in Lemma 1 for the single asset case. In 

particular, we observe no spillover of liquidity effects across assets. The systematic component 

of liquidity shocks is reflected only in the equilibrium price at time 1, whereas the idiosyncratic 

component of liquidity shocks is reflected only in the equilibrium asset holding. Although it 

would appear as though there’s a common component in the time 1 asset holdings of 2

ˆ( )
2

i A

va
γ γ δ
σ λ
−
+

, 

this component pertains only to the investor-specific “idiosyncratic” element of the common 

liquidity shock that applies to each specific asset. This can be easily seen by setting i Aγ γ=  

which makes the systematic shock common across both assets and investors, causing it to 

completely disappear from holdings.  Hence, as in the single-asset case, liquidity matters only if 

liquidity shocks are heterogeneous across investors. If liquidity shocks are systematic, investors 

cannot trade and the availability of liquidity will not be a factor. Thus, prices will simply adjust 

without trade. If liquidity shocks are idiosyncratic across investors and assets, liquidity will be 

transmitted across investors by trading, and since M →∞ , the idiosyncratic liquidity shocks will 

be perfectly mutualized. However, there’s no transmission of liquidity across assets even in this 

case. 

We next turn to the market equilibrium at time 0. As in the single-asset case, in order to 

solve completely for the equilibrium at time 0 we need to make specific assumptions about the 
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distribution of iγ across the investor base, and about transactions costs. As before, we assume 

that 1i Aγ γ= =  and restrict our analysis to the two polar cases of perfectly liquid and perfectly 

illiquid markets. 

 

Lemma 9. If there is trading at time 1, the equilibrium price of asset k at time 0, 0
kP , is: 

 2 2
0
k

vP v a Ka δσ σ= − −  (21) 

If the market is not open for trading at time 1, 0
kP  is: 

 2 2 2
0
k

vP v a Ka aδ εσ σ= − − −  (22) 

 

Proof. Parallels proofs of Lemma 2 for the case 0λ = , and Lemma 6, respectively. 

 

We state the main result of this subsection in Proposition 4. 

 

Proposition 4 (Liquidity transmission across securities). When asset returns are uncorrelated, 

there is no transmission of liquidity across assets even when investors experience common 

(systematic) liquidity shocks. Systematic liquidity shocks are always fully priced, whereas 

idiosyncratic liquidity shocks are priced only if they cannot be mutualized by trading. 

 

Thus, it is seen that the results for the multi-security case exactly parallel our benchmark 

case with a single risky asset. It is especially important to note that despite a multiplicity of risky 

assets, there is no transmission of liquidity across assets in the above case. Since systematic 
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shocks are, by definition, perfectly correlated across investors, there is no possibility to eliminate 

their effect by trading. As shown in (20), systematic shocks are simply reflected in the 

equilibrium price, without trading. This would be the case even if these shocks were not common 

across assets. Idiosyncratic liquidity shocks are perfectly mutualized by trading in each asset, 

without spillover effects across assets. Thus, they are reflected in volume but not in price, since 

the mutualization is perfect when M →∞ . Even if idiosyncratic liquidity shocks were common 

across assets while being idiosyncratic across investors, there will be no transmission across 

assets as long as all assets can be freely traded. Thus, the only case in which liquidity 

transmission across assets will occur is if liquidity shocks on one group of assets can be better 

mitigated by trading another group of assets, which would arise if liquidity shocks are correlated 

across the two groups of assets while there being significant liquidity differences across the two 

groups. We turn to this case next.  

 

4.2 Liquidity Transmission from Liquid to Illiquid Assets 

Due to the increased complexity introduced by the assumption of correlated asset returns 

in this subsection, we examine the special case of K = 2 in which liquidity shocks are common 

(i.e. perfectly correlated) across the two risky assets but idiosyncratic across investors. Thus, in 

this case, k k
i i iθ ε ε= = . We compare three subcases: 

a. Both assets perfectly liquid; 

b. Both assets perfectly illiquid; and 

c. Asset 1 is perfectly liquid while Asset 2 is perfectly illiquid. 
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In “a)”, since M →∞ , investors will be able to completely eliminate the risk of liquidity 

shocks by trading with each other. Hence, this risk will not be priced and the time 0 equilibrium 

price will be 2
0 ; 1, 2k

vP v a kσ= − = . Since both assets are liquid, they will trade independently, 

without any transmission of liquidity between them.  The optimal holdings at time 1 are 

1 2
1 1 2

ˆ
1 i

i i
v

X X
a
ε
σ

= = + , indicating a trade size of 2
î

va
ε
σ

 in each case. 

From the standpoint of liquidity risk, “b)” is the polar opposite of “a)”. The inability to 

trade the assets means that investors will be fully exposed to the risk of liquidity shocks. Hence, 

this risk will be fully priced, yielding a time 0 equilibrium price of 

2 2
0 2 ; 1,2.k

v  P v a a kεσ σ= − − =  

In “c)”, the individual's problem becomes: 

 ( ){ }1 2 1
0 0 1

1 1 1 1 1 1 2 2 2
0 1 0 0 1 0 1 1 0 0

,
max max exp ( ) ( ) ( )

i i i
i i i i i i

X X X
E E a W X P P X v P X v Pε ε  − − + − + + − + + −   

 (23) 

where the notation follows (19). Lemma 10 states the relevant results for the time 1 and time 0 

equilibria. 

 

Lemma 10. When Asset 1 is perfectly liquid and Asset 2 is perfectly illiquid, the equilibrium 

time 1 holding of asset 1, and equilibrium prices at time 0 for both assets are as follows: 

 

1
1 2

1 2
0

2 2 2
0

ˆ
1 i

i
v

v

v

X
a

P v a

P v a a ε

ε
σ

σ

σ σ

= +

= −

= − −

 (24) 
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Proof. Parallels proofs of Lemma 1, and Lemma 2 for the case 0λ = , respectively. 

 

The comparison, especially across cases “a)” and “c)” is interesting. Intuitively, since the 

liquidity shock is common across the two assets, one would expect transmission of liquidity in 

“c)” from Asset 1 to Asset 2. This is not what we find. The optimal holding of Asset 1, and 

therefore the optimal trade size in response to the liquidity shock, is the same in “a)” and “c)”. 

On the other hand, there is a differential price impact across the three cases associated with the 

pricing of liquidity risk. As we would expect, liquidity risk is not priced for Asset 1 in either “a)” 

or “c)”, whereas for Asset 2, the price in “c)” includes a liquidity risk premium of 2a εσ . 

However, in “b)”, where both assets are illiquid, the liquidity risk premium is 22a εσ . In “c)”, the 

investor’s “total exposure” to liquidity risk is lowered, since the liquidity risk associated with 

Asset 1 can be completely mitigated by trading at time 1. However, this does not affect trading 

volume, and from the standpoint of Asset 1, “a)” and “c)” are identical. Hence, despite the 

commonality in liquidity shocks, Asset 1 remains independent of Asset 2.  

These results are somewhat surprising. In order to gain further insight into the issue of 

liquidity transmission across assets, we examine how the results in “a)” and “c)” above change 

when Asset 1 is a perfect substitute for Asset 2, i.e. their payoffs 1v  and 2v  are also identical. 

When both assets are perfectly liquid as in “a)”, the relevant results from the time 1 and time 0 

equilibria are stated in Lemma 11. 
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Lemma 11. When the assets are perfectly liquid and their payoffs are perfectly correlated, the 

time 1 holdings and time 0 equilibrium prices are as follows: 

 

1 2
1 1 2

1 2 2
0 0

ˆ
1

2

2

i
i i

v

v

X X
a

P P v a

ε
σ

σ

= = +

= = −

 (25) 

 

Proof. Parallels proofs of Lemma 1, and Lemma 2 for the case 0λ = , respectively. 

 

When Asset 1 is perfectly liquid while Asset 2 is perfectly illiquid, as in “c)”, the relevant time 1 

and time 0 results are stated in Lemma 12. 

 

Lemma 12. When Asset 1 is perfectly liquid while Asset 2 is perfectly illiquid, and their payoffs 

are perfectly correlated, the time 1 holding of Asset 1 and time 0 equilibrium prices are as 

follows: 

 

 

1
1 2

1 2 2
0 0

ˆ
1

2

i
i

v

v

X
a

P P v a

ε
σ

σ

= +

= = −

 (26) 

 

Proof. Parallels proofs of Lemma 1, and Lemma 2 for the case 0λ = , respectively. 
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The comparison of these results is interesting. The illiquidity of Asset 2 in the second 

case is not a factor in pricing. The ability to trade Asset 1 permits investors to transfer the entire 

liquidity risk of Asset 2 to Asset 1. This is seen in the doubling of the trade size of Asset 1, from 

2

ˆ
2

i

va
ε
σ

 in the case where both assets are liquid, to 2
î

va
ε
σ

 in the case where only Asset 1 is liquid. 

Thus, the two assets are perfect substitutes, and transmission of liquidity occurs from Asset 1 to 

Asset 2, allowing investors to perfectly offset the illiquidity of Asset 2 by trading in Asset 1. 

Thus, as suggested by Huberman and Halka (2001), the availability of substitutes will 

give rise to liquidity transmission across assets and commonality in liquidity. The spillover 

effects in volume are as in Caballe and Krishnan (1994) and seem to occur only when 

fundamentals are also correlated, regardless of whether or not liquidity shocks are correlated as 

well. Our model captures these spillover effects only imperfectly since Asset 2 is assumed to be 

perfectly illiquid. However, it is not difficult to visualize the more general case in which both 

assets are partially but differentially liquid, where a liquidity shock to one asset causes co-

movement in volume across the two assets. 

These results have useful implications for the valuation of illiquid securities. Since these 

securities are, by definition, traded only infrequently if at all, they cannot be accurately valued 

based on market prices. Our analysis suggests that at least in some situations, the market prices 

of liquid substitutes can be used to benchmark the value of illiquid securities. Our framework 

may be especially relevant for valuing restricted stocks and other securities which are privately 
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placed issues of public corporations.9 Restricted stocks are frequently issued by public 

companies and are identical to their publicly placed counterparts in all respects except that they 

are subject to trading restrictions. These restrictions are formidable and are designed to 

effectively force the purchaser to withhold the securities from public trading for the duration of 

the restricted period, except when exceptional circumstances justify the cost of overcoming these 

restrictions.  

These restrictions appear to induce a significant discount in the price of restricted 

securities compared to their publicly traded counterparts. Wruck (1989) reports an average 

discount of 14% in a sample of 83 sales of NYSE and AMEX firms making private sales of 

restricted shares between July 1979 and December 1985. In contrast, a sample of 45 sales of 

registered securities during the same period reveals a premium of 4%. Silber (1991) reports an 

average discount of 33.75% in his study of the impact of illiquidity on restricted stock. 

Our analysis suggests that when liquid but otherwise identical substitutes exist for 

illiquid securities, the price discount due to illiquidity should be zero. As noted previously, the 

intuition for this result is trivial -- if an investor wishes to reduce (increase) his holding in an 

illiquid security, he can short sell (buy) the liquid substitute. The magnitude of the discounts 

observed empirically suggests that the unavailability of liquid substitutes and/or short sale 

restrictions may be significant impediments to hedging the liquidity risk of illiquid securities in 

                                     

9 The Securities and Exchange Commission (SEC, 1971) classifies restricted securities as securities acquired from 
an issuer in a transaction (private placement) exempt from registration as stipulated in the Securities Act of 1933. 
The basis for this exemption is that the transaction is not a public offering and the securities are privately placed with 
a group of investors who do not need the usual public stock issue protections offered by the Securities Act. Investors 
who buy these securities are required to provide a letter of undertaking that they are being bought for long-term 
investment purposes. 
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this way. However, it is not possible to rule out significant levels of mispricing, especially since 

restricted securities are typically placed on a negotiated basis that relies on long-standing 

industry norms about the “appropriate” discount for illiquidity. 

 

5. CONCLUDING REMARKS 

 

This paper has explored some of the issues raised by recent findings of common factors 

in liquidity. We have examined how such common factors could arise and what impact they 

might have on asset prices. Differentiating between systematic and idiosyncratic components of 

liquidity shocks has permitted us to more thoroughly analyze these questions. Surprisingly, 

common liquidity shocks do not give rise to commonality in trading volume. Covariation in 

standard liquidity measures such as volume requires covariation in the levels of investor 

heterogeneity. Idiosyncratic liquidity shocks, which give rise to investor heterogeneity, create 

liquidity demand and volume. Investors can potentially diversify their risk by trading, and 

therefore, the pricing of idiosyncratic liquidity risk depends on the market’s liquidity. Our results 

are largely independent of the number of different securities traded in the market, lending 

support to our conjecture about commonality being the outcome of covariation in investor 

heterogeneity rather than of systematic liquidity shocks.  

We have advanced the notion that understanding the structure of liquidity demand is key 

to understanding the economic effects of liquidity. Since investors are likely to fall into a wide 

variety of clienteles with regard to their liquidity demand, this issue is important from an 

empirical standpoint. Furthermore, this is also likely to be an important consideration for 
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companies that have the choice of targeting their securities to different investor clienteles and/or 

markets.  

The theoretical framework presented here provides a useful basis for further empirical 

investigations on the role of liquidity in asset pricing, and differentiating between systematic and 

idiosyncratic drivers of liquidity. Subject to the prevailing market structure, volume is the 

manifestation of investor heterogeneity arising from idiosyncratic liquidity shocks, while price 

volatility is largely the manifestation of systematic liquidity shocks. Differentiating between 

these effects is key to determining the economic effects of liquidity.  

Many questions remain. Our analysis implies that the supply of liquidity will arise 

endogenously from liquidity demand, in addition to other factors such as market structure and 

the presence of informed trading. In the past, this issue has been approached largely from the 

standpoint of asymmetric information models, with uninformed traders being assumed to have 

limited discretion in trading, if at all. In contrast, we provide a microscopic examination of 

liquidity-driven trading to the exclusion of information-driven trading. A combination of the two 

will provide a richer framework to analyze the origins and consequences of liquidity variations. 

Finally, our analysis has shown that different liquidity variables measure different things due to 

the differential impact of systematic and idiosyncratic liquidity shocks. Moreover, whereas the 

traditional focus has been on factors related to the supply of liquidity, we show that liquidity is 

the outcome of both demand and supply factors, with the demand side having a much more 

significant and varied impact than previously thought to be the case in the literature. The 

implications of these new insights will need to be considered in future empirical analysis.  
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Appendix 

Proof of Lemma 1 

The investor’s time 1 problem can be expressed as: 

 { }
1

2
1 1 1 1 1 0

ˆmax  exp ( ) ( )
i

i i i i iX
E a W X v P X Xθ λ  − − + + − − −   

  (A.1) 

which yields the first order condition: 

 2
1 1 1 0

ˆ( ) 2 ( ) 0i v i i iv P a X X Xθ σ λ+ − − − − =  (A.2) 

Equating aggregate demand and supply for the risky asset across all investors yields: 

 1
1

M

i
i

X M
=

=∑  (A.3) 

Noting that ˆ ˆ ˆi i iθ γ δ ε= + , and aggregating across all investors, we obtain the market clearing 

price at time 1, 1P , and the equilibrium holding of the risky asset by investor i, 1iX , as: 

 

2
1

2
0

1 2

ˆ ˆ

ˆ ˆ ˆ( ) ( ) 2
2

A A v

i A i A v i
i

v

P v a

a XX
a

γ δ ε σ

γ γ δ ε ε σ λ
σ λ

= + + −

− + − + +
=

+

 (A.4) 

 Q.E.D. 

Proof of Lemma 2 

At time 0, the individual's problem becomes: 

 

 { }
0 1

2
0 1 0 0 1 0 1 1 1 0 max max exp ( ) ( ) ( )

i i
i i i i i iX X

E E a W X P P X v P X Xθ λ   − − + − + + − − −    
 (A.5)  

which is equivalent to: 

 
0

* * * 2 * 2 * 2
0 0 0 1 0 1 1 1 1 0

1max exp ( ) ( ) ( )
2i

i i i i v i i iX
 E - -a W X P P X v P a X X Xθ σ λ

   + − + + − − − −      
 (A.6) 
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where *
1iX , *

1P  are the optimal time 1 holding and equilibrium price, respectively, both normally 

distributed variables from the perspective of time 0. This is of the form: 

 { }
0

0 0 0max exp ( )
i

i iX
E a W Z X  − − +    (A.7) 

 

Substituting from the time 1 first order condition, Z  reduces to: 

 * * 2 2 2 * 2
0 1 0 1 0 1

1( ) ( )
2i i i v iZ X P P X X  a Xλ σ= − + − +  (A.8) 

 

and substituting for *
1iX , *

1P  from Lemma 1: 
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+ ∆ + ∆ +
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 (A.9) 

where  1

M

j
j=

A = 
M

θ
θ

∑
 and i i Aθ θ θ∆ = − . This expression is of the form: 

 2( ) ( ) ( )i i AZ  A B E Fθ θ θ= + ∆ + ∆ +  (A.10) 

where A, B, E and F are non-random. From the moment generating function of Z , 

[ exp( )]E Z− − , disregarding terms uncorrelated with 0iX , (A.7) reduces to: 

 { }
0 0

2
2 2

0 1
1 ( )exp

2i i

B

X X
B B

L MMax E aZ Max aA M
L L

   − − ≡ − +      
 (A.11) 

where: 
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1 2
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a X       M   a
a

M   a X

θ

θ

θ

σ

σ λ σ
σ λ

σ

∆

∆

= +

+
= −

+
= −

 (A.12) 

where 2
θσ∆  and 2

Aθ
σ  are the variances of iθ∆  and Aθ , respectively. Taking the first order 

condition with respect to 0iX  and noting that 0
1

M

i
i

X M
=

=∑ , we obtain the market clearing price at 

t = 0: 

 
2

2 2
0 2 2

2
2Av

v

aP   v a a  
a a

θ
θ

θ

λ σσ σ
σ λ σ

∆

∆

= − − −
+ +

  (A.13) 

Noting that 

 
2

2 2
A M

ε
θ δ

σσ σ= +  (A.14) 

and 

 2 2 ( 1)M
Mθ εσ σ∆
−

=  (A.15) 

yields the expression for 0P  in (6). 

 Q.E.D. 

 

Proof of Lemma 3 

The expected size of each individual's trade is given by: 

 [ ]
2

0 1 2
0

2 exp
22i

XX

E | X  |  = dα α α
σσ π

∞  
∆ − 

 
∫  (A.16) 

where: 
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2 2

1

( 2 )X
v

M
M= 

a

εσ
σ

σ λ

− 
 
 
+

 (A.17) 

 

which yields: 

 [ ]0 1 2

2 2 1
2i X

v

ME | X  |  = 
a M

εσσ
π σ λ π

− ∆ =  +  
 (A.18) 

and the expected total volume of trade in the market, 1Q , is: 

 [ ]1 0 1 2

( 1)
2 2 2i

v

M M MQ E | X |
a

εσ
σ λ π

−
= ∆ =

+
 (A.19) 

 Q.E.D. 

Proof of Lemma 5 

When the secondary market at time 1 is perfectly liquid, by following the steps of the proof of 

Lemma 2 for the general case one can show that the time 0 first order condition of (A.11) with 

respect to 0iX  becomes: 

 2 2 2
0 0 0v A iv a P a Xδσ γ σ− − − =  (A.20) 

Noting that 0
1

M

i
i

X M
=

=∑ , we can aggregate across the investor base to obtain the following 

equilibrium results: 

 

* 2 2 2
0

*
0 1

v A

i

P v a a

X

δσ γ σ= − −

=

 (A.21) 

Q.E.D. 
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Proof of Lemma 7 

Equating the values for 0P  in (14) and (15) yields: 

 2 2 2 2 2(1 )( ) ( )
(1 )v vδ ε ε

µ µσ σ σ σ σ
φ φ

−
+ + = +

−
 (A.22) 

which can be rearranged in the following form:  

 
2 2 2

2 2

1

(1 ) v

v

δ ε

ε

µ φ φ
σ σ σφ φ
σ σ

 
 
 = ≤
  + +

+ −  +   

 (A.23) 

Substituting for µ  in (14) yields the desired result for 0P . 

 Q.E.D. 
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